Fluency Constraints for Minimum Bayes-Risk Decoding of Statistical Machine Translation Lattices

نویسندگان

  • Graeme W. Blackwood
  • Adrià de Gispert
  • William J. Byrne
چکیده

A novel and robust approach to improving statistical machine translation fluency is developed within a minimum Bayesrisk decoding framework. By segmenting translation lattices according to confidence measures over the maximum likelihood translation hypothesis we are able to focus on regions with potential translation errors. Hypothesis space constraints based on monolingual coverage are applied to the low confidence regions to improve overall translation fluency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Path Counting Transducers for Minimum Bayes-Risk Decoding of Statistical Machine Translation Lattices

This paper presents an efficient implementation of linearised lattice minimum Bayes-risk decoding using weighted finite state transducers. We introduce transducers to efficiently count lattice paths containing n-grams and use these to gather the required statistics. We show that these procedures can be implemented exactly through simple transformations of word sequences to sequences of n-grams....

متن کامل

Lattice Minimum Bayes-Risk Decoding for Statistical Machine Translation

We present Minimum Bayes-Risk (MBR) decoding over translation lattices that compactly encode a huge number of translation hypotheses. We describe conditions on the loss function that will enable efficient implementation of MBR decoders on lattices. We introduce an approximation to the BLEU score (Papineni et al., 2001) that satisfies these conditions. The MBR decoding under this approximate BLE...

متن کامل

Efficient Minimum Error Rate Training and Minimum Bayes-Risk Decoding for Translation Hypergraphs and Lattices

Minimum Error Rate Training (MERT) and Minimum Bayes-Risk (MBR) decoding are used in most current state-of-theart Statistical Machine Translation (SMT) systems. The algorithms were originally developed to work with N -best lists of translations, and recently extended to lattices that encode many more hypotheses than typical N -best lists. We here extend lattice-based MERT and MBR algorithms to ...

متن کامل

Neural Machine Translation by Minimising the Bayes-risk with Respect to Syntactic Translation Lattices

We present a novel scheme to combine neural machine translation (NMT) with traditional statistical machine translation (SMT). Our approach borrows ideas from linearised lattice minimum Bayes-risk decoding for SMT. The NMT score is combined with the Bayes-risk of the translation according the SMT lattice. This makes our approach much more flexible than n-best list or lattice rescoring as the neu...

متن کامل

The University of Maryland Statistical Machine Translation System for the Third Workshop on Machine Translation

This paper describes the techniques we explored to improve the translation of news text in the German-English and HungarianEnglish tracks of the WMT09 shared translation task. Beginning with a convention hierarchical phrase-based system, we found benefits for using word segmentation lattices as input, explicit generation of beginning and end of sentence markers, minimum Bayes risk decoding, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010